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EXCITATICK CF ?LASKA FESORANCES BY A SMALL PULSED DIPOLE

by
W. 0. Ceering and J. A, Fejer

Scuthwest Center for Advanced Studies
Zallas, Texas

ABSTRACT

The space and tize dependence of decaying resonant oscillations excited
in a collisicnless plasza by an infinitesimally-small pulsed dipole is de-
termined, first in the absence and then in the presence of an external
—egnetic field,

In the presence of a mzgnetic field only the "quasi-electrostatic”
rescnances are treated, These occur at the plasma frequency I, the electron
cyclotron freguency 2, the upper hybrid frequency (H2 + 92)1/2, the lower
hybrid resc#ant freguencies and at the frequencies nQ where n is a posifive
integer. The quzsi-electrostatic epproximation is used in thg treatment
of these rescnancesj the limits of its validity are examined in some detail

1/2 _ o es _ . s .
rescnances No similar approximations are made for plasma

for the (52 + 9°)
cscillaticns iIn the ebsence of a megnetic field; the more accuraté results so
obtaired differ little from those cerived with the aid of the quasi-electrostatic
aoprox :atign, within the region of interest, ) .

At a given tize in the éresence of a magnetic field the electric field of
the'oscillaticn is epproximately uniéorm up to a certain critical distdnce,
beycnd which the azplitude of the cscillations increases proportionally to

e pewer (different for the different rescnant frequencies) of the distance

&nd eventually decreases again. The zbove mentioned critical distance increases

as the sguare rcot cf the tize. At a given point the oscillations first build



up and then decay proportionally to some inverse power of the time which in
the pfesence of a magnetic field is different within, and beyond the critical
distance (the decay is faster beyond the critical distance)-and is also dif-
ferent for the different resonances,

The phase of the oscillations aiso varies with the distance and therefore
the resonant frequency observed with a top-side sounder from a space vehicle
is affected by vehicular motion. For fypical satellite vélocitiés the per-
centage frequency shift is insignificant for the electronic resonances; for
the lower hybrid resonance, however, the percentage frequency shift is véry
large and may rule out the use of the local excitation of this{resonance in
satellite or rocket investigations of the ionosphere.

Vehicular motion generally causes an increase in the observed oscil-
lation amplitudes; the lower hybrid resonance is, however, again a very strong
exqeptioh from this rule, .

The change of phase of the oscillations with position is believed_to be
responsible for the complicated interference effects observed with the aid of

large satellite-borne antennas in the iocnosphere.
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1. Introduction

There have been several theoretical discussionsl°3 of the rescnance
effects observed with top-side sounders—in theAiCDOSpheugja, Fejer and
Calvertl showed th;t resonant quasi-eleétrostatic cscillaticns of long
persistenge can occur in éirecticns a?proximately parallel to the magnetic
field at the plasma frequency I and at the electrom cyclotron frequency 9,
and in directions approximately ncrmal to the magnetic field at the frequency
(H2 + 92)1/27and at whole multiples of Q. These are the freqﬁencies at which
resonances are ccnsistently obsetved7. ' S_turrock3
considered the excitaticn of rescnant quasi-electrestatic cscillations by an
infinitesimally small pulsed dipole. In his treatment of these oscillations
he uses a combinaticn of thé collisionless Boltzzann equation with the,equa;
tions of'electrostatics, hereafter called the guasi-electrostatic approximatioh.
He calculates the oscillations only at the positicn where the original dipole
impﬁlse occﬁrred.- In the consideration‘of the resonance at the harmonics of
the cyclotron frequency Sturrock has to change his model from an infinitesimal
diyole to an infinitesimal line charge to avoid divergent intergrals. In the
treatment of certain other, weaker electrczagnetic tyge resonénce; not discussed

in this paper and not predicted by the quasi-electrostatic approximation Sturrpck3

uses the cold plasma approximation.

2

+ 9251'/2

1112 discusses the resonance at (I mere generally, without

using the quasi-electrostatic approximation (i.e. by using the full set of
Maxwell's equaticns instead of those of elec{rcstatics). and obtains a t-l

asymptotic time dspencdence whereas Sturrock's werk results in a t-2 time dependence

In the present paper in the absence of an external magnetic field the

resonance at the plasma freq ency is treated without the restriction of the quasi-

electrostatic approximation, using a ccmbination of Mzxwell's equations (not just



those of electrostatics) with the collisicnless 3oltzmann equaticn. It is shown
that the more correcf results thus cbtained represent only a minor correction
to the quasi-electrostatic approximaticn in practice. In the presence of-an
external magnetie field the quasi-elect;ostatic approximation is used but

both the space and the time dependenée of the field is calculated. This part

is thus an extension of Sturrock'§3 work and for the resonances at 1 and

a2 + g2)Y/2

the results at the positicn of the exciting diﬁole impulse agree
with those of Sturrock. At other positicns the amplitude of the oscillations
is‘larger and not smaller as was‘anticipated by Sturrock in his remark; 6n the
effects of the satellite mqtion and the resulting motion of the receiver away from
the point of excitation, .

The oscillations at tﬁe lower hybrid resonant frequencies are also
discussed in the present paper and the difficulties anticipated in the use
of these resonances iﬁ ionospheric investigations from space vehicles are
poiﬁted out,

The importance of Landau damping in the treatment of the resanénées
at harmonics of the electron cyclotron frequency is stressed. ThiéAdamping
limits the angular range of the waves participating in the oscillations and
its neglect leads to divefgent integrals as is apparent from Sturrock's work. .
In the present paper; Landau damping is taken into account in only a relatively
rough manner and therefore the treatment of the reéénances near the harmonics of
the cyclotron frequency and particulgrly near the cyclotron f;eqﬁency itself
is less accurate than the tréatment of the other resonances,

1/2

Finally it is shown that if (1° + 22)/%<x then the quasi-electrostatic

approximation still describes the initial decay of the oscillations at the
2,1/2

) ) _ .
source near the frequency (1I° +Q according to a t 2 law correctly but that

after a few millisecondsunder typical iocnospheric conditisns the decay law at




the scurce zssumes the t-l fera obtained by Kuttallz. The field at a point
ooving ;way with the satellite velocity is, hcwevery, still we=1l described
by the guasi-electrostatic approxmatxcn.

The treatment of the present paper is restricted to scurces that are
infinitesizally scell, both in space and in tize. The limitations implied -

by this restricticn are ccnsidered in the body of the paper and in the concluding

discussion,

2. Excitation of Plaszma Rescnances in the Abserce of a Mzgnetic Field.

tssuming an exp(iwt-iker) space-tizme dependence for the quantities in
" o - .

VYaxwell's equations results in the eguation

iuo‘lw' X ;-gcgfg.u) + ive E + Eint(}\("w) +.§ext(-]3"") =0 , (1)A
for the electric field E(k,w), where jint is the current carmed by the

plasza ; artlcles and 3> ext is the scurce current and where rationalized

tks units have lL*eeu used, Eguation (1) will be interpretéd as a ;’elafion

tetween Fcurier ccrmpenents in the following discussion.

The external charge density is taken to be
(E.n.l.t) = 8§(t)8(E)8(n) [5(z+f) r gét - §(z-2L) r th] (2)

where the c‘uarses -G(t)r qdt and 6(t)lr qdt, situated at the points (0,0 l)
and (0,0,-{) of the cartesian coordinate syste:; EynyL fora a dlpqle whose
gxis Is pzrzllel to the § exis. If J is veryé:all (and qut correspondingly
large) then zn expansion of the delta functioms in ¢ in powers of 4 results,

to first order in

ext(EamaTat) = PE(EIS(EIE) =t < (5) . ' (3)

where P = 24th is the tire integral of the dipcle mcment cf the infir.itesimaliy



pulsed dipole radiator situated at the origin, A ccmbination of (3) with

the equation of continuity div ,éext‘ = -apext/at gives |

Jexe T PEESMISCE) By, ()

with y being ‘the unit vector in the direction of the dipole axis.

By Fourier's inteéral theorem

Dext(’y.t) =j‘bext()f‘,,z.n)e:s:p(ia.ot-ills,"r'“) dk ds (s) "
where
-4, -4, . '
pext(b.w) = -(2m) 1ch = (21) ikeyP . ‘ ‘ (6)
Similarly,
~eiext(b'u) = (2ﬂ)iuiw?5 . . . 7

Equations (6) and (7) are independent of the coordinates &, n, § which will not
be used in subsequent parts of the paper,
The plasma current density, obtained from the collisionless Boltzmann

equation, neglecting the motion of ioms, :'Ls9

‘ i (3f_/ay)y - .
_,l'nt(b’w) = == E(kyu)* de : (8)

~ where the integration path is above the pole and whére e is the magnitude of
the charge and m the mass of an electron. The distribution £, = N(m/ 21?KT)3/2
exp(-mv2/2KT) of the particle velocities y is assumed to be Maxwellian. Without
loss of generality the vector ,‘S is taken parallel to 1':he z axis and the vector

E is assumed to lie in the x-z plane in the following calculation, The component

equations of (8) are therefore




i

ie2 f<>vx2
Ix mt(}\(" w) = - ﬁ—Ex(b'me-mz v

Iy inelke@) =0 (9)
. e ‘
Iz sntlbe®) = - 17 ¢

These equations relate the components of the plasma current density jz int ©

j“ int and jx int © j..l. int? parallel and perpehdicular to k, to the parallel
and perpendicular components E_(kyu) = E|| and Ex(k'm) = E| of the electric

field. Using the identities

e (—bv ) 1/2 b 2 ab1/2 2 -b32 ‘
- -V o : _
and
1/2 |
w 2 2 2 ~a 2 2
f oot ) e:; E-:v ) dv = 2\71/232 e-baf e dr=w za/1>]'/2+n.xa2e.ba ’ (l\
-0 - ° .

where the integration path is above the pole, equation (9) may be written in the

form }
( ’ 2
i . h-2k-l T\1/2 o 2K'rk2 KT 2 o 4172, KT a
L :Lnt J_ ° 7 :

2 w(m 1/2
-2KTk2Ik 2KT’ 12
e
o .

172
. _ -2,=-32m .
]” int - Elleoh k w ('zT'f) -2i e

2

ﬂ [gx'r)”z /2 Txnd

(13)

1/2
where h = (¢ KT/Ne ) . If mm2/21<'1‘k2 >> 1, the asymptotic expansion



2e of cr =i .2, 201 o(ve) (14)
x 2 2 2

may be used and the rezi parts of the expressicns in the square brackets on
the right harnd sicde of (iZ) and (33) may ke reglected in ccmparison with
the imaginery perts. This Is ejzivalent tc the neglect cf Landau damping
and to the restricticn cf attenticn to the cdecay rather than to the building
up of the oscillaticzs at a given point; the complete soluticn has been con-
R o te 10 o ianes - s . .
sidered by Weitzer™ . Substituticn of (7), (12) and (13) into (1), written
in terms of ccrnponernts parallel and perpendicular to k, then yields the fol-

lowing vector equations for the parailel and perpendicular ccmnonents of the

Fourier transfcrm E(k,w) of the electric field E(r,t):
o~ o~ ~ ~
-1
2 22 4
_ -4 -1 _f[=x 3k“h°n o 2
B” (kyu) = (21) € ;( -1+ m ) (')aglk ) S (15)

w w

' 2 22 -1
- -4 =1 bid ¢k 2.2 4 4 2
‘E.L (h'm) = ~(27) e, P (:f -1+ ..,2 + kbl /w ) ')'c.xhxg/k » (16)

1/2 is the electrcn plasma frequency.

2
where I = (le /eom)
If attention is ccnfined to sufficiently cmall values of k, then the
reciprocals of the bracketed expressions assume large values only when wMIl

and therefore w may te replaced by [ when the difference I ~ w is not involved.

Equations (15) and (16) then assume the forms

same 7t pnf-nt-advhTh ey (17)

‘k‘:'l ‘(Ku)

1 .20 2 02 02, 2 2001 2 ,
PT°Lw”-1"-k (V)Y Jxlocw/k (18)

E| (o) (20) e "

where v2 = KT/m.
The Fourier inversicans of (17) and (18) may be most easily accomplished

by using the relations



kke N P .u.;‘—,'e'l}ﬁ.'g . ;'stxse- =5 - vxVxue X5 . (19)

The space-time lcngitudinal and transverse electric fields are found to be

B = = "‘j’L' _§£’£1_~£;_1_2§.£_ (20)
n) e -1 =3k V -

E,(£,t) = - —om— VxTx -§-— "[1“"“1 : . (21)

il (2%, [ 12-x%( 2w"’) ,

Thus, the electric field is determined by integrals having the form

v d Itel ke - )
L[ miein e

1/2 /

where w = 3 2 for the transverse

V fcr the lergitucdinal field and w = (c +V )1

field., The integratica over freguencies is given by

o
W -t (]

- eiut sin w t ) . :
f 2 2 é:al = ‘2' » N - ( 23)
- [ ]

with the contcur passing telow the singularitiess Also, the integrations over

the directions of X are easily performed and the result is

2% .
f as f e 1kr cos@ ;0 = ux s‘:rkr (24)

Equaticn (22) for A therefcre reduces to

112 1/2
2 sin wt(—- + k
- . 2
A= 87 X sin kr W
wr k 2 1/2
° (g— + kz)
2
W

(25)

The last factor in the integrand of (25) may ke .:mttenll in the form
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2,2 2

wt
ds coskBJ vy A t =B

. 2 1/
sin wt(n-z- +k2)
W

5 173 "f
Il 2 o
(—2'**}

W

1/2 ‘
} (26)

in which J° is the Bessel function of first kind and zero order. Using (26)
in (25), the k-integration may be carried out 2 and A becomes

3 pwt 1/2

A= B.‘L.f H(r-g8) J [ (w2t2-62) ] ag , (27)
%23
°
where H(x) = 1 if x > 0, H(x) = 0 if x < O,
If r < wt, (27) becomes
(28)

3 _r 1/2
ne n(——-) ]
2 2; furthermore,

Whenever r << wt, the radical in Jo may be feplaced by 1-8"/2w't

for times of interest here it >> 1 and Jo may be replaced by its large argument

The result of these approximations on J° is

approximation.
2 \1/2 1/2 '
8 o~ |2 HB n .
J_Int - z | COS [t ——pom = = » (29)
o ( w2t2 (nﬂt) 2w2t
~and A now reduces to
_ ing?
1/2 . n, 0 2
Ny po.
> ( ) A peJei(ne “)f e 2Wtade (30)
wr
°
(1) 1fr n/2w2t << 1, the exponential in the integrand of A may be expanded,

The result of the integration in (30) is



- 5 2 - . ’ ’
A= PE] L leest + 22 sinme- D) B 20
It W 4 3 2w2t 4

From (20), (21) and (31), the electric fields are

s\1/2

P on n
E;(x,t) = — u sin(lit- =) - (32)
~ |~ 12¢ v° 3.3 ~ m .

o]

and
g\ 1/2 "

E (r,t) = 2 T2 4 sine- L) (33)
noL ~* 3.3 ~ [} ¢ .

3/2
seo(c2+v2) vt

(2) 1If r2n/2w2t >> 1 the asymptotic expansion

r -ing2/2w’t 2 \¥2 .« 2 2 .

o Wt ol wt ity i
e dp £ ST e 4 ¢+ o %P =~ 3 (3u)
° : 2w t
may be used in (30) and then A reduces to
1/2
3 5 2
o L4y . 32t W Ir pd

A-;‘Tsnﬂtf' — —é-cosnt-—-r+ﬁ) o . (35)

n r 2w t .

The electric fields at distances r, which satisfy 2w2t2/nt << r2 << w2t2 » are

given by forming the agpropriate derivatives of the second term in (35). The

results (for c >> V) are

~ P 3n nr2
E;(z,t) = e cos 8 cos[Nt= p= - —5— (36)
~ |~ 6¢ ve T 4 6Vt
°
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w P nd T Il
Ej(Dyt) = ———=e | e, sin 0 cos|littm = —emm (37)
Al '~ e°c3 R ~g \ % 22 , :

where € is the angle between the radius vector r and the dipole axis.
Equations (3?), (33), (36), (37) show that gll is almost everywhere very
"zuch lerger thanlga.provided that the velocity V, characteristic of the
ther~al motion of the electrons, is much smaller than the velocity of light c.
Attertion may now be restricted to equations (32) and (36) whose respective
regicns of validity are separated roughly by a sphere of radius r = 21/2VH‘1/2tl/é;
the radius of this sphere inc;eases proportiocnally to the square root of the time,
Well inside the sphere the field given by (32) is uniform and éarallel to the
¢ipole axis. Well outside the sphere but for distances much smaller than Vt the
field is almost radial and proportional to cos 6; the relation of the field in
this region to group propagation is discussed in Section 3,2. At distances not
zuch szaller than Vt it may be shown that the approximations of the present

thecry (kh << 1 and the neglect of Landau damping) are invalid; presumably the

field starts decreasing long before the distance becomes equal to Vt.

Tke phase term nr2/2w2t in (36) should be noted; it differs from the usual
phase term occurring in wave propagation which varies linearly with r and t,
rather than with rZ and t™>. The existence of this phase term can give rise

to camplicated interference patterns if large antennas are used; such interference

patterns have been observed with top-side sounders,
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3. Electrostatic Oscillations in a Ysgnetic Field

3.1 Basic Concepts

The relationship between the electric field and theFFanent—density in
a plasma is complicated ccnsider;bly by the presence of an external magnetic
fields In the last section it became clear that, in the absence of a magnetic
field, the electric field of the dipole was almost entirely determined by EII,

at least for reasonable values of the distance and the time delay. The results

obtained there would have remained practically unchanged if the speed of

light ¢ had been set equal to infinity in Xaxwell's equations. The cozplications

introduced by the external magnetic field are greatly reduced if the speed of
light ¢ is set equal to infinity or, differently expressed, if the equations

of electrostatics

-ieok;ng,m) = Pine (kow) + Pext (Jyw) (38)

’lsx §'=.0 » (39)
are substituted for Maxwell's equations. The electric field is then aiways
parallel to‘h. It will be shown in section u>that the approximation ¢ = @ is not
always a good one in the presence of a magnetic field although it is probably
adequate in practice,

The external charge density Pext and its Fourier transform are taken to be

given by equations (5) and (6), The charge density Pint of the plasma may be

13

shown™  to be given by

Pint (5"") = E%‘”} § Bn . (40)
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where
xb_2 k%n %1 2sine\ < x?n 21 %sin20

S . r r E r r
1+ g = iw expi- L {. x

r 2 m 2

o Q = - Q
r A .r
(41)
o ' k2h 2H 2c0526
r r

17 - i(u+m9r)1 dar

x Jr exp | -
o

A ) . a2, 2 1/2
and where 2 = leB/mr is the cyclotron frequency, IIr = (Ne zZ, /mrfo) the
2,1/2

plasma frequency and hp = (cOKT/Ne?zr is the Debye length associated with

r-th tyre charged particles with mass m, and charge ezr. The particles with r =1

are taken to be electrons, for which Z, = =1, From (38), (39), and (40)one

1
cbtains the equation
p_. . (ko) i (kew) -
E(k,u) = ==X k. _=xt y- - . (42)
it -ie kY8 ¥ ek 1-i-Y 8
o € k r
r o o r

The electric field E}E.t) of the pulsed dipole is obtained by taking the
inverse Fourier traﬁsform of equation (u42), with Br substituted from equation
(sl).

Formally the solution of the problem has thus been obtained in terms of
infinite sums of multiple integrals. 1In practice it has been shown1 that, in
the presence of a magnetic field, resonant plasma oscillations contain only
waves with propagation vectors k nearly parallel or nearly. perpendicular to the
magnetic field (840 or B'\-;-) and with wave numbers k much smaller than the

reciprocal Debye length (or the reciprocal mean cyclotron radius in some cases).
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In the following sections the approximations kv0 and 60 or &vi/2 (as the
case may be) will be used to simplify the evaluation of the relevapt integrals
whieh—iepresent individual oscillating contributions to the tota: field in_
the vicinity of certain resonant frequencies. In each case the self-consistency
of these approximations is demonstrated.

3,2 The Reson;nce at the Plasma Frequency

The propagation vectors of the waves participating in this resonance
are nearly parallel to the magnetic field and their wave lengths are large

compared to the Debye lengthl. If the inequality
kh << [mQ + o /Micos 6] : (43)

is satisfied for all integral values of m then Landau damping may be neglected
and equation (41) may be expanded to yield [cf. the derivation of equation (15)

in Ref. l]o

2 ..2 2 2 2 4 y 2
8, M ’sin’® 1 cos’e xh_7n s sinte S 311 .
iek 2 2 2 - n 2 2 2, 2 ..
o Qr -w w Qr (qr -l)(qr ~4) q, (qr -1)
. (un)
-2 2 3 cosue
X sin” 6 cos” 6 ¢+ —_ ’

qr .
where the abbreviations q, = m/ﬂr is used.
Only the electronic terms are appreciable near the plasma frequency.

2

The use of the approximations sinev6® and w2NH2 (except where the difference

2 2 . . . .
w -II" occurs) in a combination of equations (42) and (44) then leads to the

equation
. 2 ) -1
ip kil 2.2
EGgew) = =2 o %p? » D 0% - v (45)
€ k Q -n
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If the z axis of the coordinate system is tsken parallel to the magnetic
field and to the axis of the pulsed dipole, then the inverse Fourier transform

of the z-component of E is

E(pst) Z2E (5,t) =jzz(5,u) exp(iut-ik-z) dk du (46)

Since the k vectors are nearly parallel to the z-axis, the prcainent spatial
. variation will be in the z-direction. After the recessary substitutions from
(6) and (45) and completion of the w integration with the aid of (23), the

field along the z-axis is given by the equation
n -2 -1
E(z,t) = (27m) £, PIfF(t) - F(-t)1 , (u7)

where

FCt) =3e;nt explil- 8 “te + 2EEC 25l egeax  (u)
2 k=0 Jo=0 222 2 1

and where a summation of the integrals for the two alternative signs is meant,
corresponding to the two 6 integrals near €=0 and 6=%,
In the subsequent calculations use will be made of the identities

for integral n,

.n+l

. 2 .
Lim x2n+1 e(xa-e)x dx = L 5 at a-(n+l) _ | (49)
, €0
and
32 Y2 5 1
un [ X2 Glia-edx® 4 xC 0 4F a- -)--(n -4 ) (50
e+0 2 2 ’

There are corresponding integrals between the limits -» and = in the case of

(50). The © integration can be performed using (49) with n = 0. The k integrand

in (u8) can be written as 2costk23exp(31v2tk2/2n) and the k-integral has the value ?



r———— v e RN vt g
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- ) | RV R
2‘[ exp(iak”) ces kz ¢k = (3) e "4 ha (51)
o .
where ﬁ = 3V2 t /2., The result for F(t) is
y 42
Y2 il 32 @%2ad)e
F(t) = (o= e b 5 (52)
9z Qzl'lt
and for F(-t)
2
.Z
12 o a My A2 2 2, === .
Pty = _(é)l sicep 2@ )e T (s3)
¥4 QNt
where t is taken as positive.
" Use of (47), (52) and (53) gives the electric field as
2
1/2 .2 (Qz-nz)cos(ﬂti-i- E—)
Ph Tl ° [ Ba
E(z,t) = —3 3 3 > (su)
bre oz Qnt i
o
If zzlua << 1, (54) reduces to the uniform field
3/2
2 2 ,
E(z,t) = L[] sin (Teap) (55)
eOQ t 6nV

If zz/ua >> 1, (54) reduces to

5/2
2 2 2 2
P(Q =-1") I ) z = 2N
E(z,t) = - cos (litt— - ) - (s85)
’ (21)3/2c092 (3V2 t7/2 y 6v2t

This expression indicates that the field actually increases as the sguare of

the distance for z >> (szt/n)llz. It may be easily shown (by an approxicate
calculation of the inverse Fcurier transform) that in the x-y plané the field
is uniform to the much larger distance of about Vt, SinceAspace vehicles wmove
with speeds much less than V, the variation of the field for the resonance at
the plasma frequency in a direction nermal to the magnetic field (or, for any
resonance in a directicn nearly perpendicular to the k vectors of the prcainent

constitutent waves) will be neglected.
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If the cosine in (51) is written as a sum of exponentials then it may
be seen that for zzlka >> 1 the wave nuﬁbers contributing substantially to
the field are in the neighborhood of z/2a; it is very significant to note that
the value of the group velocity for k = z/éa is z/t as would be expected. The
1

present approximations are then only valid if z/2a << h”~". The combination

of the conditions zz/ua >> 1 and z/2a << h_l leads to the inequalities

2
z Z
= =2 5
o << Jit «[h) (57)

" which imply z/h >> 1 and It >> lg.that is, z must be many Debye lengths and
the decay described by (56) occurs after many plasma periods, Furthermore,
the time interval over which (56) is valid is considerable since z/h >> 1.
The first of the inequalities (57) is equivalent to z << Vtj thus, for a fixed
value of time, equation (56) which indicates that E is proportional to 22 is
only correct if z << Vt, For z > Vt, the present results are invalid and
the field is probably quite small on account of Landau damping. The value of
the field given by (56) for t = z/V may be regarded as a sort of upper bound
(larger than the maximum) of the field at a given point z; it is propoptional
to 2-3/2 and thus decreases with increasing distance.‘ It should be remarked
here that the condition z << Vt would be automatically satisfied for a vehicle
that moves away from the source point with a velocity much smaller than V,
Equation (56) shows that the phase of the oscillations depends on position
(on the z coordinate). This has the consequence that the field of a large
antenna has a complicated interference pattern, It is therefore not surprising
that the oscillations received after pulse excitation by a large moving antenna
do not decay steadily, but fluctuate in intensity with a quasi-period much
longer than the oscillation periode. No detailed theo: :tical investigation of

these interference effects will be carried out here, However, an effective
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wavelength A for these effects may be defined for given values of z and t by
the condition [z#2)? - z2m/ev%t =21, If z >> A is assumed t'en this equation
yields A/h = 6rlIt/(z/h). This equation states that the wavelength, measured
in Debye lengths, is equal to &r times the ratio of the time measured in
plasma periods to the distance z, alsc measured in Debye lengths. It is interest-
ing to note that if the satellife travels at a velocity Vs parallel to the
magnetic field and reaches a distance z large compared to the dimensions of the
antenna so that av_t then A is independent of the time and has typical values
near 10 meters at a height of abopt 1000 km in the iocnosphere. At these large
distances there shculd be no fluctuations in received amplitude,
3.3 The Hybrid Resonances |

3.3.1 General Equations

The propagation vectors of the waves ;wrticipating in these resonances
are very nearly perpendicular to the magnetic field and their wave lengths tend
to be large compared to the Debye length [or more precisely satisfy the ine
equality (43)], If the inequality (u3) is satisfied then, after the introduction
of the ccmplimentary angle ¥ = w2-6 and the approximations c0529 = ¢2,

sin2e = l-¢2, a combination of equations (42) and (u44) leads to the expression

-1
. 2 2 . 2, 2. 4
ip .k I i 3k“h_ T
2 .
E(kw) = —=22 1+ E - g (1-¢°) - —‘%—wz - —_ 5 (58)
g e k r w = w R (q “-1)(q “-4)
o r : r ‘9 S

In p_, .+ 8iven by equation (6), y is taken to be perpendicular to the magnetic
field.
Rescnance occurs when the expression in the curly bracket vanishes for

k = 0 and ¢ = 0} this condition leads to the equation
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R o e s I .  (59)

if only one type of icn is assumed to te present, Sizce the icnic mass is
zuch greater than the electronic mass, the two scluticns of the quadratic

equation obtained from (59) may be written apprcxicately as

u2=ﬂ2+Q2 : (60)

2
L2, 2 .02.(2 .41 )
= ]
2 a24+p2
e e

(61)

where @y and w, are the upper and lower hybrid resomant freguencies.

If several ions are present then equaticn (€0) rezains approximately
valid but there are as many lower hybrid resonznces as there are types of ions.

If the ion cyclotron frequencies are Qil > Qi2 > 913-" then the various hybrid
/2 __, '

. . ) 1/2 _ ’
resonant frequencies lie between (ﬂenil) end 911' Letween Qil

and nia. etc. In the vicinity of each of these resonant frequencies B 3 the

2
term 1-2 nrz(wz-a r"’)‘1 in (58) may be expanded about w? = sz (where it vanishes
r

2 02,2

s s . 2 2 2 - 2.2
by definiton) to give (w” - Bi ) gnr /(Bj -Qr ) I Aj(w 'Bj A). Thus E(’)s,m),

and 912’ between

9

in the vicinity of each hybrid rescnance, may be written in the form

, ip. k
Ega) = —=2 (o2 2ec %o %)t (62)
c KA » IS M| * .
o} :
where, from equation (58),
-1 Z Hr2 nrz
C. =A _ - : (63)
i i r |B 2—0 2 B 2
i r 3

and
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D

-1Z 2.8 02 21,2 2.1
= «A, N - (B."-Q Lo-
A Shr r ( 3 r.) (BJ I&Qr) 7 (64)
For the upper hybrid resonance the constants are given by Al = lte-z,
2 __2_2 2.2, 2_2-1 2 4, 2 _2.a1
= = + = -
Bl Qe +He ’ Cl Qe He (Qe He ) and Dl 3h He (39e He ) .
1f there is only a single ionic constituent present and if the inequality
nez >> Qeszi is satisfies (as in jionospheric applications) then the constants A
B,, C, and D,

u

e 2.0 2.2 b =2
A, = (2541 % e 7 W,

for the lower hybrid resonance are given by

2.
1/2

Qeﬂine

’ B

_ 22 2 _ 2
c2 = -a, n, /(9e +ne )

, D

sh2n%
e i
where f is a numerical factor not too different from unity.

Using (6), (19), (23) and (62) the electric field is given by
. C.t D.t
E(r,t) = —-P‘}-%-V—Z-—— -d%- e 355 sinfs.t - -5%— \bz -
v (21)% AB. | k j
where u is
»

12
2B, k

(65)

perpendicular to the magnetic field,
.product in the exponential equals kr[sin eo cosY cos( ¢-¢°) + cos 60 sin ¢]

The scalar
where the coordinates of L are (r,e°,¢°). The ¢ integration can be written
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2n p s
f | e-lkrsmeo coesy C°5(°'4’°’ as ¢ 2nJ°(krsin9°) (66)
o :

since ¥ is small, and (65) becomes

T
7,
B(r,t) = ——-&—‘-7-?—— dk J (krsme ) fﬂ dwe‘tkrwose \
(2m)%e o33 -3
(67)
C.t D.t
: j 2 ;| 2
sin Bjt - 2Bj V- 2Bj k .

The § integration may be extended to Is and easily evaluated, The result is

2
Dkt
m.vv o . . ;
E(r,t) = f dk J (krsin6 ) sin |B,t -
(68)
k2r2co§26 n.
* 2T E78, = -7

The k-integral is given in Ref. 12, If the vector operator in (£8) is expanded

the final result for ’f‘i'(s.t) is

P a2 sin% a2
E(g.t) “"‘oAj fp508 ¢°ao2 - 863 SB'+ $, cos¢°-a-5-rz- F(p,z,t) (69)

where the function F is given by

1
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2
B.C.t

J P i3 \ ,
o 2 2 ) 2

H(D it -B, %J cos Bjcjto

F(p,2,t) = sin [B.t + (70)

|D c.t2-B, 2 2Il/2 37 y(p,c,t2-B;%2%)

3 b} 3] ]

where the upper symbols apply if (D.thz-sz2) is positive and the lower
symbols if it is negative. The two alter native expressions only differ in phase.
In the previous two equaticns p is the cylindrical radius and z is measured
along the direction of the magnetic field. Equation (69) becomes particularly
"simple in the extreme cases szj << uajt and p2Bj >> uDjt in the plane z = 03
the expressions so obtained apply for values of z satisfying 22B2 << chjt ;‘
the field is then independent of z.

In the former case a small-argusent expansion of J° leads to the spatially

uniform field,

PB, sin (Bjt + phasé)

E(p,¢_,2=0,t) = § : (1)
v o0 ere A, |c D]3|1/2 2 :

where the constant phase term, which is not of great interest, is not written
in detail,
In the case pzﬁj >> uDjt the asymptotic expansion for J° may be used to

obtain a predeminantly radial field; the radial component is given by

2
B.p
i —
Pp cos ¢° 353/2 sin Bjt+2Djt_* phase
E (pyd ,2=0,t) = : = (72)
(<] o ,,,_)3/2‘C-Il/4€°Aj Dj? t5/2

and its magnitude thus only depends on the coordinate p cos ¢o parallel to the

dipole axis,
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A 1limit on this second type of approximation may be cbtained by introducing
it at an earlier stage; if the Bessel'fﬁnction in the integrand on the right
side of (68) is approximated by its asymptotic value for large argument
then, upon ccmpleting the squares in the fésulting exgonentialS, térms of the
form exp{~ia(k tp/2a)2] are obtained under the integral sign, just as in equation
(51) for the resonance at the plasma frequency. The values of k contributing to
the resonance therefore satisfy k ~ p/2a = Bp/Dt., Since the expansion (62) is ;

oniy valid when Dk2 << B2, substitution of the abeve value of k into this

inequality yields for the validity of (72) the condition

t > pp /2 - o (79)

for p which is similar to the condition for z obtained above., Both condition;
would be satisfied for a satellite that moves away from the source point.

The expressions so far derived are completely general and can be applied
to all of the hybrid resonances. In two special cases explicit expressions for
A, B, C, D have been listed previously and those will now be substituted.

3.,3.2 The Upper Hybrid Resonance
Putting the previously derived values Al’ Bl’ Cl. and lainto‘(ﬂ.)

gives the uniform electric field

pCn 2+ 2y(aa_ 2-n 2)%/2 ginpn 2o 224 4 phase) |
. _ e e e e e e t
E(py220,t) =4 372 2.3 2 (74, .
8n3°/“%c an ‘v t ’
o ee
for distances p that satisfy the inequality
y
m 't
p? << 1212 s (75)

2 -2\, 2 2.172
|ane n, |(ne %)

For distancer ‘ Fying the reverse inequality, application of (72) yields
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| 22 %1 _%*"3a 21 %) o cos ¢
e e e e o
E (o.¢°,z=o,t) = 373 R x
e 9 (2m)/“an " v
° ee - (76)
023 _%-n_2)(n_%+a 2112
1 2. 2.1/2 e e e ‘e
X —z75 cos (Qe +I, YTt o+ —— + phase
t 6 h" R _t
e
The inequality (73) beccmes
12 0 l39e2_n62‘ 1/2
t >> 3 . : (77)
h 1 2
e _

or p << 3t/?2 Vt(ne2/|39e2-ne2|) . Equation (77) is similar to the cofresponding
condition in the case of the rescnance at the plasma freqﬁency. The qualitative
arguments about the time, given by (73), that must elapse at a given point p
béfore equation (76) becomes valid, will not be repeated herej the results
are similar to the cscillations near the plasma frequency.

Equatién (76) like equation (56) contains a phase term which must lead
to interference effects if the radiatcrs are large. Depénding cn the éign of

3Q 2-He2 the oscillaticns are delayed cr advanced in phase at larger distances.

e

An effective wavelength for given values of p and t could again be defined, as
in the case of oscillations near the plasma frequency; equation (76) yields for
the wavelength i,

th 4
e

= b7

o>

-1
(&)
2 2 2 2,1/2 'h
|39, %=1, |(n “+2,%)

3.3.3 The Lower Hybrid Rescnance for a Single Ionic Constituent
Substitution of the previocusly derived values of A2, 82, Cz, and D2 '

into (71) leads to the uniform field
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P2
e

ET e°(3 £)

%42
e

-1
~-.sin(B,t + phase) ' (78)
2)2v3 t2 2

E(p 4¢4220,t) = =
“/2(9 2+H
e e

which for typical lcnespheric parameters is of the same order of magnitude as

- " -

the corresscnding field (7u). Equation (78) is valid for
2
) , (@ 2m 31/
p° << 42t/3 = 12h" foem 4 Hit .(79)
R _

?'
4]

n
rt
18]

'D

7]
'l
t1
I3
o)
[ 4

1Y
' )
3

1isv Is seldcx satisfied in practice.

If the reverse inequality of (79) holds then (72) yields
PQeglzne3 P cos ¢o ) -5/2
cos| Bt

E (p,% 4230,%) = e t
P o 3.3/2,. 2. 2.9/4  1/2 4_2 2
% (=7) (Qe L LURD RO PR A

(80) -
2 -1
) Qe (nit)
1/2

+ + phase

120%(a "4 )
which is not very wuch szaller than the corresponding>field given by (76), It
should alsc te ncted that the "Doppler" frequency shift caused by the'phase
terz in (82), for typical satellite velocitiés Ve =-p/t can be greater than
the lewer hybrid freguency, Bz, itself, It appears therefore that this type
of rescnance is unsuitable for ionospheric investigations by the methods which
have been used for the electronic resonances, .

/2 ph-lf

It is interesting to ccasider the further condition nit >> 3“l
follewing frex (73) since it nust be satisfied, in addition to the reverse
inequality of (79), before (80) beccmes valid. This condition is not satisfied
for typical satellite velocities and it would seem (although no explicit predi
dictions are rade by the present analysis) that the satellite leaves the lower
hybrid rescnant oscillaticns behind before they have a chance to build up.

The situation is just the reverse in the case of the various electronic

rescnazces; they have ceczyed censiderably by the time the satellite arrives
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at a given point.
3.4 Oscillations near Integral Nuitiples of the Electron Cyczlotron Frequency.
The angular frequency of thesé»osciliations is in the vicinity of nQe,
where n is any positive integer greater than unity. ﬁquation (44) is then
not a valid approximation for-these oscillations. Although the k2 term
can be safely neglected in (44), the electronic terms m = n and m = -n in
(41) must be taken into account since they make large coﬁtributions near
wﬂ;nﬁe and w " nne respectively; the corresponding terms must be included on
the right of (44), If the inequality (43) is satisfied then Landau damping
“is negligible, the'integral on the right of (u41) may be replaced by the first
term of its asymptotic expansionl and the.modified Bessel function is well
represented by its approximate value for small argument, Equation (uu) for

electrons then takes the form

. 2 2n=-2 2n 2
ieo-l kK" 8= 2“ ] sin2 e+ 2-n+l (gb) L 53 + 11--,‘;ct:sz e (81)
w =-Q : (=) -n"Q") w

In the integration over ¢ = 1/2-6 the effective angular range is roughly
determined by the condition (43) since Landau damping increases rapidly
when it is not satisfied. As a crude estimate of the inverse Fourier

transform, the angular range of the ¢ integration will be taken as

_ Hol-n0 '
Ay = l"-ll»_thT., » . (32)

and the valuz of & in (81) will be taken as exactly n/2. -With the value
of _..ven by (8l) the Fourier component #(},w) of the potential ¢(p,t) is
found from the relatiom E(k,uw) = igﬁ)\c',w) and from the equations (6) andv

(42) to be
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. 2 2n-2 2n -1
i -
sy = - 228 Ly 4 T, T (g_h_) Bl ] L (83)
o (2n) eok w 0" ] (n~1)1(w°-n“Q°)

The important variation with w is contained in the last term of the square

bracket and therefore the replacement of @ in the second term by nQt is a

good approximation, After re-arrangement equation (83) takes the form

2,2 .
. i Q -
ey = - ARgest Lol N (s8)
(2n) eok I°«0%°(n"=1) w =n"q"-N
where in the numerator QQ{?QQ has been replaced by N and where
_ o=n+l n{n+l) 2n=2 _-2n+4 _2n .2, 2 2.-1 -
N =2 G (kh Q n°" (@°(n"=1)-1"] . (85)

In the inverse Foupier transform of (84) the w integration can be
carried out with the aid of (23) and the approximate result of the ¥
integration is assumed to be Ay given by (82), with|w|-nQ = N/2n9 [the
condition for the vanishing of the last denominator on the right of (au)]t

The resulting expression for ¢(p;¢°. z=0, t) is

i(n+1)3P2'2“'“9'“”+Sﬂ”“‘lh”"°5cos ¢ G(t)-G(~t)
= = _ o ) , (86)
¢(r°.¢°, 2=0, t) = 3 2. o .. 2.3 :
m eo[(n-2)l] (@ n =1)-n"] 2i
where
6(t) = P 1in f K4 oypl(ia-c)k2D"2] o ikecos(4=4) cos(¢-4_)dédk, (87)
e~+0 .

and where

4

n+l h2n-2n-2n+3n2n

as= t (88)
P (a-2)1 22(n2-1) - 1l Al
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: 4

After the equatica 2niJ°'(kp) =JJ 24 expl[-ikp cos(é‘@o)] cos(¢°¢°)
o
is used to carry out the ¢ integratica, equation (87) takes thz2 form

6(t) = 2niel™®t f 3,0 ke) K'Y exp(iak®?) ok (89)

where the integratioan path inaicated by the limiting process of (87) is
- understood,

The integral in (89) will only be considered in the extreme cases in
wﬁich the Bessel functicn is well approximated by its asympotic value for
small or large argucment. For small arguments (83) becomes

o ) -
G(t) = -2nieingfjr %-k““'3 exp(iak?®"?) a . (90)
o

After the substituticn x = -1 equaticn (90) has the form

- 3n-1 2
G(t) = -niei™?t E%T' x Pl gl gy ) (a1)
o
Use of the identity
- 2 m+l - n+l
J' y"e ey =i rEh e 2
o

in (91) and subsequent substitution into (86) leads to the equation

1 n=2 1 4n-5
-2 T, T 2l =
E o T l(n-2)17 Yney! r{ -1 Jpa® Y sin(nattphase) (92)

L4n-5 2 2n-1 n=-2
n-1 - - -
2" (a-De VAt SRR PO P oo

For large argurents of the Bessel functicn (89) becomes
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o(t) = 2 iei™t (3_)1/2 o-l/2J' 4n=9/2 L RIS
(93)

™ .
. - ., 20n=2 -
e-l(kp- u) e1ak dk

Under the present assﬁmptions only those values of k will contribute to
(93) for which the exponent akzn.2 : kp is near a stationary value, After
approximating this exponent by the first and third term of the Taylor series

about this staticnary value (since the second term vanishes) the resulting

'integrationvis easily carried out. In this manner the rather complicated
expression

Tn-12 un-3 3

B, (048gt) = 2 =3 =202 0y W73 (on.3)7 Y2 [(pa2)13®3

2n - 8n~9 - 6 «2n+6
x Pso-l cos ¢° p2n-3 v 2n-3 1 2n-305|92(n2-l)-ﬂ2] 2n-3
(9u)
2n-2 ' 1
- 4n-3 (2n-3) 2n-3 TV - 2n=-2

xt 22 gin {me! (n-2)1} vy 34

n-2 2n~2 n+l J

22}1—3 (n_l)2n-3

1 1l

n2 '2n-3 t 2n-3

X lﬂz(nz-l) - + phase

is obtained for the radial electric field, These oscillations will not be
discussed here in detail; the arguments used for the oscillations at the

upper hybrid frequency remain valid, For large values of n and practical
values of pand t equation (94) rather than (92) must'be vsed; it has the

asymptotic form



will be excluded in the 6 integration. A cczbination of (42) and (4u) leads

1/299

eV

n2Pp cos ¢ 2

2,21 -
E = —s-mT———:- 95 |92(D2-l)-ﬂ l 1 t 2
e 2e' n eov )

sin| mat? + phase (95)
where t.e sign of the phase term in both (24) and (95) has the sign of
[92(n2-1)-n2]. It should be noted that for not too large values of n the
amplitudes predicted by (95) could be considerabl} larger than those predicted
by equation (76) for the upper hybrid frequency. A

3.5 Oscillations near the Electrcn Cyclotron Frequency

The propagation vectors of the waves participating in this rescnance

. are nearly, but never entirely, parallel to the magretic field. As in the

case of the oscillations at harmeaics of the cycletron frequency, Landau

damping plays an important part. If a crude estimate equivalent to equation ~

(82) is made then the expression

o, = wa™M/2 g-172

(ss)

(hk)llz ln2

-Q2|1/2

[cefs equation (22) of Ref, 1] is obtained for the angle e, vhich 6 must

exceed before Landau damping beccrmas unizportant; scmzller angles than this

to the equation

ip 2 2.2 ' -1
E(kw) = —=X8 [1 c0 _ L8 | 5% %% (a7
~ € k 2 2.2
i Q w -

for small angles 6 and for small values of kh., If equation (97) is written

in the form

Py 2 -
E(% w) = 1"ext: g - vuz -Q2
' 2 2 2 2.2, 2 2.-12 22, 2 2. 4 =2, 2 2
:ok(Q -1%) w

7 T (99
Q-1R°(Q°-N) T8 - KM (NI Q (e -n°)
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then for values of 6 larger than € given by (85), for values of kh much

smaller than unity and for valuzs of w clcse to  the x? term of the dencminator

inside the curly bracket of (398) is much smaller than the 82 term and will hence

forth be neglected. In the calculation of the inverse Fourier transform the

w integration is carried out first; the ccniribution comes from values of w for

which the denominator nearly vanishes and the numerator may then be taken equal
22,2 2.-12 . ) o

to N°0°(8°-n1°) "e°, Application of (23) znd substitution of P axt from (6)

then lzads to the equation

3.2 . ’
E(z,t) = e B0 o (in¢) HEIMCE) (99)
2 2 2.2 2 A
yne  (Q°-I7)
[
where
- F 2.3 inqre? (tiz-e)k
M(t) = lim k"6 exp (_T_Q- e = dxde (100)
T es0 2(Q°-n") A
o 8=0_ k=0

e
where a sum of the integrals ccrresponding to the alternative signs is
meant, corresponding to the two & integrals near 6 = 0 and 6 = v, Execution

of the trivial ¢ integrations results in the expression

2(n%-9%)
n*a%e?

. +
M(t) = 2e1khnt_ikz

o .
f [-1+eikhnt] k & (101)
. :
It is clear from the form of (101) that for typical satellite velocities the

dependence of the field on the z = vst coordinate is unimportant and will

therefore be neglected, The k integration for E(z,t) gives the expression

E(z,t) = = Zﬂ 73 lggsin Qt . ' (102)
2% eon Vvt



TR

- 33 -

The decay of the oscillations predicted by (102) is very rapid. On the
basis of equation (102) alone the cbserved duration of the cscillations

at the cyclotron frequency shculd therefore be very much sicrter than the
durations observed at the other rescnant frequencies, This prediction does
not, however, take into account the size of the antenna. It is clear from
the form of (101) that the integrals occurring in it are functions of
8hiit-z and thus represent travelling waves which are mulfiplied by factors

of t-2 and t_a in the two terms instead of the t-s decay predicted by (102).

If the antenna is large then the waves do not irmediately leave the antemna

. and the oscillations decay more slowly than equation (102) predicts. A more

quantitative treatment of the problem would be required for more accurate
predictions; moreover the use of the electrostatic approximatien in the
treatment of this rescnance is questionable,

4, Validity of the Quasi-Electrostatic Approximation

il

In the absence of an external magnetic field it was shown that the quasi-
electrostatic approximaticn represents the cscillationsAin the vicinity of a pulse
point source rather well, The szme may still be true for scze of the rescnaﬁces,
even in the presence of an external magnetic field. Moreover, the quasi-
electrostatic approximation probably provides an adequate description-of
the initial decay of the oscillations at the point source itself for all the
resonant frequencies predicted by it. It may be shown, howevexy by a rather
crude semi-quantitative argutent that near the upper hybrid ffequency the
quasi-electrostatic z- . ~ximation does not describe correctly the asymptotic
decay of the oscillaticns at the position of the point socurcs after a very

long time.
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A glance at Fig. 3 of reference 1l shows that if the upper hybrid
frequency is less tham twica the electron cyclotron frequency then for
& = g&° (in a direction perpendicular to the magnetic field) the frequency
is increasing with increasing wave number accerding to the Appleton-Hartree
(cold plasma) approximation but is decreasing with increasing wave number
according to the electrcstatic approximation (whi&h applies to much larger

values of k). For some intermecdiate value ko of k somewhere between the

usually widely different values of k = h"l and k = lI/c the frequency w must

reach a naximum value w e In the vicinity of ko and fer k > ko the square
. of the freguency wps resulting from the dispersion relation, must be given
by a relation not unlike

2

“p

L2222 |
= w -cy*-D(k-k ) (103)

In analegy with the rest of this paper the inverse Fourier transform

iw t

of the electric field is proporticnal to integrals of the form‘!; D e_l¥ ¥ oax
iw. t

which for r = 0 may be written asojwe D k2dkdw. The ¢ integral results in a

1/2

factor with a t time dependence. The k integral for r = 0

» 1/2 .3 -3/2 2w
2 + D 2 T =le | Dt . o)
fo dk k° exp [15.;; (k=k ) t] = e & (2% -ik, (ﬁ"‘} +

(1ou)

-ix 1/2

1 2 -1/2
+ 5 e TR ko (Dt/2m°)

3/2 -1

has a t~ time dependence for t << 2m°k-2 D © and therefore the electric field
-2 . . . . . .
has a t © time dependence which is the time dependence obtained in Section 3.4,

For t >> 2:..;‘:}(0“2’1)-l the last term on the right of (104) predominates and




. ~ 35 -

1/2

results in a t~ time cependence for the integral and therefore a
t-l time dependence for the electric field, as shown by the less crude
analysis of Nuttall2. If k° is crudely taken to be the geometric mean

2y=1"1  and if the value D = 3v2n2(3p?-n?)~!

of h-l and'H/c, so that kozt\/H
derived in .ection 3.4 is uséd then the quasi-electrostatic approximation
is valid for
t << 2(.&;-4, 1) (‘—’;- - %) n'l-f,- (105)
n I

If for example II and Q are both equal to about 1 M; and if c/V = 2.103 then
t << 5 millisecond is obtained as the crude condition for the validity of
the quasi-electrostatic approximation at the position of the source, Atva
point moving away from the source with satellite velocity the quasi-electrostatic
approximation remains valid much longer since the field predicted by it decays
more slowly, |
5. Discussion

The present calculations were restricted by the aésumption of an
infinitesimally small dipole source whose moment is a 8 function of the timé.
In principle the field of any external charge distribution can be expressed
as an integral over space and time of the electric fields (which are the
Green's functions of the problem) calculated here, provided that the plasma
is uniform and that the external charge distribution in space and time is
known. In reality the plasma is not uniform but is bounded by.the ion
sheath and the antenna, and the determination of the charge and its distribution
on the antenna is difficult. Although a complete solution of the problem
is.therefore not given, the results of this paper are nevertheless believed
to provide a useful insight as well as a convenient starting point for
making quantitative predictions of the resoﬁant oscillations excited by an

antenna in a plasma,.
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The calculated fields are accurate within the limits of their respective
approximations for the oscillations neéf the plasma frequency and the hybrid
frequencies. Less accurate results have been obtained for the oscillations
near the electron cyclotron frequency and near its harmenics bec:use Landau
damping, which plays a more important part in these rescnances, has only
been taken into account in a rather rough manner.

A common feature of the present results is the existence of a surface
that roughly separates two regions in which different approximations
are valid. The critical distance to this surface (from the point of oc~
currence of the exciting impulse) increases proportionally to the square
root of the time. Within the critical distance the field of the oscillations
is approximately uniform but beyond the critical distance the field is non- 4 :
uniform and contains only those waves which have nearly the correct group
velocity corresponding to a given time and position.

In the absence of an external magnetic field the electric field (of
the oscillations near the plasma frequency) is uniform and parallel to the
dipole axis within the critical distance., The field is approximately radial
beyond the critical distance; its magnitude at any given time is proportional

to the cosine of the angle between the radius vector and the dipole axis and

is independent of the magnitude of the radius vector up to a distance somewhat
less than Vt. In this region only those waves contribute to the field at

any given distanée and time whose group velocity is nearly equal to the

ratio of the distance to the time. Still further the field probably decreases
rather rapidly with distance on account of Landau damping. Both inside and
outside the critical surface (but for distances much smaller than Vt) the

field decreases as t-3/2

. Outside the critical surface the phase of the
oscillations changes substantially with position and interference effects can

occur,
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In the cresence of an extermal magnetic field the electric field of the
cscillaticn near the plasma freguency Is esproxinmately parallel to the
rzgnetic fielé ané it's magnitule Seyond the critical distance is proportional

to the sguare of the distance up tc distances screwhat less than Vt. Since

space vehicles rove with cuch smaller velccities than V (which is roughly
the rean ther—al velocity of the electrcns) they can never reach a distance
clcse to Vt. The space vehicle is initially imsice the critical surface

and eventually cvertakes it (since the distance to the surface is only

zrcportional to the square roct of the tire) but can never approach the

¢istznce Vt closely. This argurent is screwhat mocified by the finite size

cf the antenna. Initially cne secticn eof the antenna will be outside the

eritical éistance of the Ffield generateé by another section, and even ocutside

the cdistance Vt, zné it is caly after scme time that the approximations used
A ¢

here beccue appliceble (for the decaying phase).

The tize dependence is t-5/2 insicde the critical distance and t-7/2

cutsice the critical distance at a fixed point. &t a point that moves away

5/2

frca the scurce with a ccastant velccity, the time dependence is t inside
- eus - -3/2 . s s . . . s
the critical surfsce and t cutside, F¥hile a fixed point is first cutside
gnd then inside the critical surface, the reverse is true for a moving

cint. us at a fixed point the tire cependence is first t-7/2 and then t-5/2;

=572 and then t-3/2.

at a moving point first t
The phase, as well as the a=-plitude of the cscillating field depends

ca position cutside the critical <istance at a given time, as indicated by

the phase term z2lua in (56). Interference effects are thus possible (both

with or without an external ragnetic field) when a source of finite size

(i.e. a practical antenna) is used. The ap rent frequency of the oscillations

is, morecver, redified by the roticn of the vehicle (as the result of the phase
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tern) but this effect>is caly of praétical irpertance at the lower hYbyid
frequencies,

The apprcximaticns used in this paper brezk dcwn at the lower hybrid
frequencies for typical satellite and even rocket velocities, The frequency
change czused by the vehicle rotion would be too lzrge for useful interpre-
tatiza of the cbservaticas, even if the velocity of the space vehicle were
a little less than the mean thermal velocity of iens and the approximations
of this paper were to remain valid. Morecver, it a;pears.that since the
satellite or rocket moves away almost irmediately from the oscillating regions
where the present agprcxi:ationsAare valid, these resonances may not even be
‘cbservable by the techniques used for the other rescnances; a considerably
rmore sophisticated thecry, or an experirent wouldvbe required, however to
confirm such a tentative conclusion.

The resonance at the upper hybrid frequency rese;bles more closely
the resonance at the plasma frequency but the electric field is approximately
ncrmal and not parallel to the mzgnetic field for these oscillations, at
least within the linits of the electrostatic zpproximation. It was pointed
out that the elec::ostatic approxiration is certainly valid initially for
this resonance but breaks down at the position of the source (but not at a
point moving with typical satellite velocity at right angle to the magnetic
field) after a time of the order of milliseconds for typical ionospheric
conditions if the upper hybrid frequency is less than twice the cyclotron fre-
quency. The detailed behavior of these oscillations inside and outside the
eritical surface is described in the text. Inside the critical surface the
uniform field decreases wifh time as t-2; outside the critical surface at a

§/2 . . -
/ » at a moving point as t 3/2. At a

fixed point the field decreases as t
fixed time outside the critical distance the ragnitude of the field is pro-

portional to p cos ¢° where p is the distance freco the magnetic field line
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passing through the source and ¢° is the anglé between the component of the
radius. vector normal to magnetic field and the dipole axis (assumed normal to the
magnetic field). '
Of all the oscillations those near the relatively low order-harmonies-

of the electron cyclotron frequency have the largest calculated amplitudes, At
a fixed point the amplitude is proportiénal to the [-(2n-1)/(n-1)] - th power
of the time inside the critical surface and to tbe [-(4n-3)/(2n-3)] - th power
of the time outside the critical surface, At a fix~’~ time outside the

critical surface the émplitude is proportional e - L2n/tén-3)] - th power
of the distance from the field line passing t. ... the source. The amplitude
of the oscillations observed from a point_moving away from the source with

a constant velocity has a t-l time dependence, Outside the critical surface
the phase of.the oscillations depends strongly on position and interference
effect can therefore occur vhen large radiators are used.

While no calculations of the fieldhave been carried out for large

radiators, it is quite clear that many of the conclusiops will be modified

for them. Thus the Fourier transform of the charge distribution of .the point
source assumed in this paper has the largest absolute value, for a given
magnitude of k, along the dipole axis and vanishes for directions normal to
the dipole axis. This conclusion is sharply modified when a finite so;rce

is considered. The transform of the charge distribution for a finitg thin
dipole antenna still vanishes for directions normal to the dipole axis but for
values of k much larger than the reciprocal length the largest absolute value
of the transform is found in directions nearly normal, rather than parallel,
to the dipole axis [as may be seen, for example, from equation (2.2.10) of
Balmainluj. This is in goéd agreement with Lockwood'slS observations of the

dependence of the oscillation amplitude on the orientation of the satellite
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antenna near the harmenics of the cyclotron frequency,

Since the ccupleticn of this paper the authors became acquainted
with the wers cfwzctgherty—and»nonaghai;a cn the same type of resonance- -
effects. Thnelir aim is nct a prediction of ‘the amplitudes of the resonances
but rather a thercugh investigation of the conditions for resonant behavior
of the zeéium, not restricted by the quasi-electrostatic approximation. A
direct ccoparicn of their results with ours is therefore difficult and will

not be attenzted here.
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